Z-module homomorphism
In algebra , an additive map ,
Z
{\displaystyle Z}
-linear map or additive function is a function
f
{\displaystyle f}
that preserves the addition operation:[ 1]
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
{\displaystyle f(x+y)=f(x)+f(y)}
for every pair of elements
x
{\displaystyle x}
and
y
{\displaystyle y}
in the domain of
f
.
{\displaystyle f.}
For example, any linear map is additive. When the domain is the real numbers , this is Cauchy's functional equation . For a specific case of this definition, see additive polynomial .
More formally, an additive map is a
Z
{\displaystyle \mathbb {Z} }
-module homomorphism . Since an abelian group is a
Z
{\displaystyle \mathbb {Z} }
-module , it may be defined as a group homomorphism between abelian groups.
A map
V
×
W
→
X
{\displaystyle V\times W\to X}
that is additive in each of two arguments separately is called a bi-additive map or a
Z
{\displaystyle \mathbb {Z} }
-bilinear map .[ 2]
Typical examples include maps between rings , vector spaces , or modules that preserve the additive group . An additive map does not necessarily preserve any other structure of the object; for example, the product operation of a ring.
If
f
{\displaystyle f}
and
g
{\displaystyle g}
are additive maps, then the map
f
+
g
{\displaystyle f+g}
(defined pointwise ) is additive.
Definition of scalar multiplication by an integer
Suppose that
X
{\displaystyle X}
is an additive group with identity element
0
{\displaystyle 0}
and that the inverse of
x
∈
X
{\displaystyle x\in X}
is denoted by
−
x
.
{\displaystyle -x.}
For any
x
∈
X
{\displaystyle x\in X}
and integer
n
∈
Z
,
{\displaystyle n\in \mathbb {Z} ,}
let:
n
x
:=
{
0
when
n
=
0
,
x
+
⋯
+
x
(
n
summands)
when
n
>
0
,
(
−
x
)
+
⋯
+
(
−
x
)
(
|
n
|
summands)
when
n
<
0
,
{\displaystyle nx:=\left\{{\begin{alignedat}{9}&&&0&&&&&&~~~~&&&&~{\text{ when }}n=0,\\&&&x&&+\cdots +&&x&&~~~~{\text{(}}n&&{\text{ summands) }}&&~{\text{ when }}n>0,\\&(-&&x)&&+\cdots +(-&&x)&&~~~~{\text{(}}|n|&&{\text{ summands) }}&&~{\text{ when }}n<0,\\\end{alignedat}}\right.}
Thus
(
−
1
)
x
=
−
x
{\displaystyle (-1)x=-x}
and it can be shown that for all integers
m
,
n
∈
Z
{\displaystyle m,n\in \mathbb {Z} }
and all
x
∈
X
,
{\displaystyle x\in X,}
(
m
+
n
)
x
=
m
x
+
n
x
{\displaystyle (m+n)x=mx+nx}
and
−
(
n
x
)
=
(
−
n
)
x
=
n
(
−
x
)
.
{\displaystyle -(nx)=(-n)x=n(-x).}
This definition of scalar multiplication makes the cyclic subgroup
Z
x
{\displaystyle \mathbb {Z} x}
of
X
{\displaystyle X}
into a left
Z
{\displaystyle \mathbb {Z} }
-module ; if
X
{\displaystyle X}
is commutative, then it also makes
X
{\displaystyle X}
into a left
Z
{\displaystyle \mathbb {Z} }
-module.
Homogeneity over the integers
If
f
:
X
→
Y
{\displaystyle f:X\to Y}
is an additive map between additive groups then
f
(
0
)
=
0
{\displaystyle f(0)=0}
and for all
x
∈
X
,
{\displaystyle x\in X,}
f
(
−
x
)
=
−
f
(
x
)
{\displaystyle f(-x)=-f(x)}
(where negation denotes the additive inverse) and[ proof 1]
f
(
n
x
)
=
n
f
(
x
)
for all
n
∈
Z
.
{\displaystyle f(nx)=nf(x)\quad {\text{ for all }}n\in \mathbb {Z} .}
Consequently,
f
(
x
−
y
)
=
f
(
x
)
−
f
(
y
)
{\displaystyle f(x-y)=f(x)-f(y)}
for all
x
,
y
∈
X
{\displaystyle x,y\in X}
(where by definition,
x
−
y
:=
x
+
(
−
y
)
{\displaystyle x-y:=x+(-y)}
).
In other words, every additive map is homogeneous over the integers . Consequently, every additive map between abelian groups is a homomorphism of
Z
{\displaystyle \mathbb {Z} }
-modules .
Homomorphism of
Q
{\displaystyle \mathbb {Q} }
-modules
If the additive abelian groups
X
{\displaystyle X}
and
Y
{\displaystyle Y}
are also a unital modules over the rationals
Q
{\displaystyle \mathbb {Q} }
(such as real or complex vector spaces ) then an additive map
f
:
X
→
Y
{\displaystyle f:X\to Y}
satisfies:[ proof 2]
f
(
q
x
)
=
q
f
(
x
)
for all
q
∈
Q
and
x
∈
X
.
{\displaystyle f(qx)=qf(x)\quad {\text{ for all }}q\in \mathbb {Q} {\text{ and }}x\in X.}
In other words, every additive map is homogeneous over the rational numbers . Consequently, every additive maps between unital
Q
{\displaystyle \mathbb {Q} }
-modules is a homomorphism of
Q
{\displaystyle \mathbb {Q} }
-modules .
Despite being homogeneous over
Q
,
{\displaystyle \mathbb {Q} ,}
as described in the article on Cauchy's functional equation , even when
X
=
Y
=
R
,
{\displaystyle X=Y=\mathbb {R} ,}
it is nevertheless still possible for the additive function
f
:
R
→
R
{\displaystyle f:\mathbb {R} \to \mathbb {R} }
to not be homogeneous over the real numbers ; said differently, there exist additive maps
f
:
R
→
R
{\displaystyle f:\mathbb {R} \to \mathbb {R} }
that are not of the form
f
(
x
)
=
s
0
x
{\displaystyle f(x)=s_{0}x}
for some constant
s
0
∈
R
.
{\displaystyle s_{0}\in \mathbb {R} .}
In particular, there exist additive maps that are not linear maps .
^ Leslie Hogben (2013), Handbook of Linear Algebra (3 ed.), CRC Press, pp. 30–8, ISBN 9781498785600
^ N. Bourbaki (1989), Algebra Chapters 1–3 , Springer, p. 243
Proofs
^
f
(
0
)
=
f
(
0
+
0
)
=
f
(
0
)
+
f
(
0
)
{\displaystyle f(0)=f(0+0)=f(0)+f(0)}
so adding
−
f
(
0
)
{\displaystyle -f(0)}
to both sides proves that
f
(
0
)
=
0.
{\displaystyle f(0)=0.}
If
x
∈
X
{\displaystyle x\in X}
then
0
=
f
(
0
)
=
f
(
x
+
(
−
x
)
)
=
f
(
x
)
+
f
(
−
x
)
{\displaystyle 0=f(0)=f(x+(-x))=f(x)+f(-x)}
so that
f
(
−
x
)
=
−
f
(
x
)
{\displaystyle f(-x)=-f(x)}
where by definition,
(
−
1
)
f
(
x
)
:=
−
f
(
x
)
.
{\displaystyle (-1)f(x):=-f(x).}
Induction shows that if
n
∈
N
{\displaystyle n\in \mathbb {N} }
is positive then
f
(
n
x
)
=
n
f
(
x
)
{\displaystyle f(nx)=nf(x)}
and that the additive inverse of
n
f
(
x
)
{\displaystyle nf(x)}
is
n
(
−
f
(
x
)
)
,
{\displaystyle n(-f(x)),}
which implies that
f
(
(
−
n
)
x
)
=
f
(
n
(
−
x
)
)
=
n
f
(
−
x
)
=
n
(
−
f
(
x
)
)
=
−
(
n
f
(
x
)
)
=
(
−
n
)
f
(
x
)
{\displaystyle f((-n)x)=f(n(-x))=nf(-x)=n(-f(x))=-(nf(x))=(-n)f(x)}
(this shows that
f
(
n
x
)
=
n
f
(
x
)
{\displaystyle f(nx)=nf(x)}
holds for
n
<
0
{\displaystyle n<0}
).
◼
{\displaystyle \blacksquare }
^ Let
x
∈
X
{\displaystyle x\in X}
and
q
=
m
n
∈
Q
{\displaystyle q={\frac {m}{n}}\in \mathbb {Q} }
where
m
,
n
∈
Z
{\displaystyle m,n\in \mathbb {Z} }
and
n
>
0.
{\displaystyle n>0.}
Let
y
:=
1
n
x
.
{\displaystyle y:={\frac {1}{n}}x.}
Then
n
y
=
n
(
1
n
x
)
=
(
n
1
n
)
x
=
(
1
)
x
=
x
,
{\displaystyle ny=n\left({\frac {1}{n}}x\right)=\left(n{\frac {1}{n}}\right)x=(1)x=x,}
which implies
f
(
x
)
=
f
(
n
y
)
=
n
f
(
y
)
=
n
f
(
1
n
x
)
{\displaystyle f(x)=f(ny)=nf(y)=nf\left({\frac {1}{n}}x\right)}
so that multiplying both sides by
1
n
{\displaystyle {\frac {1}{n}}}
proves that
f
(
1
n
x
)
=
1
n
f
(
x
)
.
{\displaystyle f\left({\frac {1}{n}}x\right)={\frac {1}{n}}f(x).}
Consequently,
f
(
q
x
)
=
f
(
m
n
x
)
=
m
f
(
1
n
x
)
=
m
(
1
n
f
(
x
)
)
=
q
f
(
x
)
.
{\displaystyle f(qx)=f\left({\frac {m}{n}}x\right)=mf\left({\frac {1}{n}}x\right)=m\left({\frac {1}{n}}f(x)\right)=qf(x).}
◼
{\displaystyle \blacksquare }